AppAble Plugin for Unity Pro

Reference Guide

Along with this documentation you will find a folder called “AtomSDK Sample
Project” which is a Unity Pro project that includes all the necessary files, objects,
scripts and structure. And another folder called “DLL Wrapper” which contains the
actual Plugin, some other necessary files that make it work, and its documentation.

Introduction

Intel created an SDK to allow developers an easy integration of their current
developments with the application store. This SDK contains several components and
among them the most important ones are the actual libraries that the developer
needs to integrate within his/her code to communicate with the store.

Unfortunately for Unity developers, these libraries are static .LIB and Unity only
accepts dynamic .DLL ones. The solution proposed by a Unity engineer was to create
a DLL-Wrapper, and this is what baKno developed and integrated into a Unity
Project for you to publish your games into this new App Store.

First, you will need to sign into the Atom Development Program at the following
Intel’s site:

http://appdeveloper.intel.com/

Download the SDK, read the documentation and get familiar with the program and
the SDK in general.

When ready, using the same site, create a new application under your account. You
will only need to enter the name and minimum information as a starting point. And
if accepted, it will be listed under your account and a GUID code will be assigned.
You will need this code later to build the final application.

When getting familiarized with the SDK, please note the location of two important
files:



runATDS.bat
MS-DOS Batch File
1 KB

stopATDS.bat
MS-DOS Batch File
1 KB

In the AppUp SDK 2.0 these files have been renamed “run.bat” and “stop.bat”

There are two environments: Debug and Production. The idea is to develop
everything under Debug and only when everything works, change to Production to
build the final application and submit it to the App Store.

To test your Debug application you need to run the “Application Test and Debug
Service” (ATDS), a command line application that emulates a communication to the
App Store. By running the Debug application you can check if all communication
stages work as described in the docs. This ATDS is run and stop with the two files
mentioned before.

Sample Project
The sample project contains two scenes: IntroScene and SceneX.

IntroScene is the one that is loaded first when the game starts. This scene has two
different objects: IntroObject and IntelObject.

IntroObject has a script called Intro. This script is the one that checks the initial
Communications with the App Store and validates the Application. This is why it has
to be run just once when the application starts.

IntelObject is a GUIText object that shows the error messages and therefore it has a
C# script called “baKno.cs” that communicates with the Plugin. This object has to be
located in all scenes that you want to check status against the App Store.

SceneX is just a sample scene and it just contains a different versiono f the
IntelObject. This version has an extra script called “Appstore.js”. We recommend to
place the IntelObject as it is in the SceneX (copy and paste) in all your scenes, but if
you just want to put it into the main game scene, that is fine also.

Understanding this basic structure should be enough for you to decide how to place
these game objects into your own Project.

Please remember to copy the Plugins folder as it is into your Project as well. If you
are developing in Mac OS and try to play, it will show an error because the plugin is
made to run on Windows computers.

To test your Project you will need to create a Windows build, make sure the whole
Plugins folder is exactly the same as the one on the Project (usually it does not copy



all the files) and test it on a Windows computer, a Netbook preferably. But before
running the game please remembre to run the runATDS.bat file mentioned before.

If it runs fine, and you are ready to build the final version, please go to your Unity
environment, open the script called “baKno.cs” and replace the portion where it has
the debug GUID (0x11111111,0x11111111,0x11111111,0x11111111) with the
one that Intel assigned to your application on their website.

DLL Wrapper

This folder contains the same files located on the Plugins folder mentioned before.
Additionally it has its own documentation for you to better understand its
functionality.

If you prefer to implement your own way to communicate and validate your
application with the App Store, or if you want to better understand how the sample
Project does it, please refer to this documentation.

The documentation contains the list of commands implemented by the DLL
Wrapper. All these commands correspond to the same functionality offered by the
SDK libraries.



