AppAble External for Runtime Revolution

Reference Guide

Introduction:

bakno’s AppAble External allows RunRev developers to make desktop applications that
connect to Intel's application store using a simple, yet complete set of functions.

Package Contents:

* The Software License Agreement (License.txt)

* The AppAble External files (Externals)

e The dependency's libraries (Microsoft.VC90.CRT)
* Asample RunRev stack that connects to the store
* Aguide to create the MSlI file for submission

Developer requirements:

e The Intel’s App store SDK. It can be obtained here:
http://appdeveloper.intel.com/en-us/

* Microsoft’s runtime libraries (provided with the package).
* Runtime Revolution Studio or Enterprise Edition running on Windows.
How to use the SDK:

There are two environments, Debug and Production. The idea is to develop under Debug
and only when everything works, change to Production to build the final application and
submit it to the AppUp store.

http://appdeveloper.intel.com/en-us/

To test your Debug application you need to run the “Intel AppUp Software Debugger”, an
application that emulates a communication to the AppUp store. Then run the Debug
application and check if all communication stages work as described on the docs. This

Debugger is run by calling it from the Start Menu and going to the Intel SDK program
folder.

[7) CLR .NET
. Intel AppUpdTM) Software Debuager 1.0

Add the Extension to Runtime Revolution

At the moment this external only works for Revolution on Windows (both revStudio and
revEnterprise are supported).

Inside the AppAble package you will find a directory called "External". Place the contents
of that directory inside the Externals directory at:

My Documents/My Revolution Version/Runtime/Windows/x86-32/Externals

After the files are placed correctly, start Runtime Revolution so the Extension can be
loaded automatically.

Developing a Simple Standalone Application
The example application does the following steps:

* Connects to the Client Agent.

* Checks the Authorization status.

e Disconnects from the Client Agent.

* Displays all messages pop-Up windows.

Start by creating a new, empty main-stack and add three push buttons named “Connect”,
“Status” and “Disconnect”. These buttons will perform the three main functions to
interact with the Client Agent.

DIl Test *

I Connect I I Status I I Disconnect I

The next step is to add a script to each button, this is done by right-clicking on the button
and select “Edit Script” from the pop-up menu.

E CDn.rm.-q- ! [[S
Edit Script

Property Inspectaor

Cut

Copy

Send Message 1
Card & Stack »

For the Connect button, add the following script:

on mouseUp
answer connectTolntelAPI(“Ox11111111”, “Ox11111111”, “Ox11111111”, “Ox11111111”,

“11111111-1111-1111-1111-111111111111")
end mouseUp

“connectTolntelAPI” allows the application to connect to Intel's Client Agent. The first four
parameters compose the GUID that Intel provides the developer to submit the application
to the store. The fifth one is the ID provided by bakno to validate the external.

Note: Check the list of commands later in this document for more details of this function.

For the Status button, add the following script:

on mouseUp
answer getintelADPStatus()
end mouseUp

This function allows to check the application's current authorization status at any moment
in runtime.

Finally, for the Disconnect button, this script disconnects the application from the Client
Agent:

on mouseUp
answer disconnectFromintel()
end mouseUp

Before testing the application, the ADTS that is provided with Intel's SDK should start and
be present as a console window.

To test the application, press on the EH button on the “Tools” window to debug the
simple application. Press the three buttons from left to right and check the pop-up
messages. If successful (RunRev has loaded the external), a “SUCCESS” message should
appear when the Connect button is pressed.

Deployment of the Application

Once the tests are complete, then proceed to deploy the application by going to the
“Standalone Application Settings” that is on the File menu un Runtime Revolution in order
to make sure the External is deployed. The following picture illustrates the recommended
setup in the General tab (the only required).

5 B & X & 4 @ =

General Stacks Copy Files Mac 03 Q5 X Windows Unix Web Bug Reports
Standalone name: | DIl Test (Don'tinclude *.exe” or ".app”)
Indusions

{7 Search for required inclusions when saving the standalone application

Advanced Options

(#) Select indusions for the standalone application

Ask Dialog [] Brushes Script Libraries: [] patabase Support:
A
Answer Dialog P—
[] cursors
Browser
[] Print Dizalogs Database w
Property Profiles

(#) Remove all profiles on objects
(" Setall objects to profile:

) Include profiles on objects and the profile library

Default build folder: | C:/Documents and Settings/Owner My Documents/RUNREY E
[] Automatically build here

In the picture, the option “Select Inclusions for the standalone applicaction” is selected
and the script libraries, ADTS and ADTS External, are selected.

Go to File->Save as Standalone Application and deploy the Windows test aplication. Move
the folder of dependancy's libraries (Microsoft.VC90.CRT) that is included in the package
to the Externals folder next to the deployed application and all is ready to release.

To test for debugging, the Debugger from the SDK must start before the demo is
executed.

B [0t el AppUp(T™M) Sofltware Debugger 1.0 =101%]

Applcation Service Status Request: SDK Version= 1.00; APl Level=2
Applcation Service Status Response: Compatible

Applcation Authorization Request: SDE Version= 1,00; ApplicationUUIn
=11000000-0000-0000-0000-0000000000100

Authorizing. ..

Applcation Authorizabion Response: Authorized

List of Commands
1. Connect to the App store:

connectTolntelAPl(string 11, string 12, string I3, string 14, string baknolD)

This command initializes the connection to the App store. Each of the four first
parameters are part of the GUID that the Intel developer program provides to the
developer.

Note: Because of the current development status of the SDK, The parameter
values of the GUID must be in hexadecimal of size 8 exactly (i.e.:0x12345678).

So, if the id provided by Intel is: 12341234-2345-3456-4567-567890123456

The first four parameters are: 0x12341234, 0x23453456, 0x45675678 and
0x90123456

Note: For debugging purposes, the SDK provides a debug ID so developers can test
their applications. Each parameter has the value 0x11111111. Also, bakno has a
debug GUID to try and demo the application. Thus, the command to connect to the
developer’s App store is:

connectTolntelAPI(“Ox11111111”, “Ox11111111”, “Ox11111111”, “Ox111111117,
“11111111-1111-1111-1111-1111111111117);

Error List:
* Wrong parameters: The parameters provided are invalid
« Invalid DIl GUID: the dll (not the application) GUID is invalid
e All four parameters must be of numeric value: Applies for Intel's GUID.
* baKno.dll: File not Found: The dll file could not be found
* baKno.dll: Invalid File: The dll file is invalid
* NOT INITIALIZED: The application could not start.
* NO CLIENT AVAILABLE: The Intel’s Client Agent is not Available.
« NOT AUTHORIZED: The Application is not authorized.

* ID HAS EXPIRED: The Application ID has expired.

* CONNECTION WITH THE CLIENT AGENT HAS TIMED OUT: The connection
with the Client Agent reached a timeout.

2. Check the Application Status:
getintelADPStatus()
Command that checks the current status of the Application
Error List:
« NOT AUTHORIZED: The Application is unauthorized.
* ID HAS EXPIRED: The Application ID has expired.

* CONNECTION WITH THE CLIENT AGENT HAS TIMED OUT: The connection
with the Client Agent reached a timeout.

3. Save The Application Runtime (Optional)
beginintelEvent()

Command that allows the App store client to start recording the Application’s
runtime.

endintelEvent()
Command that ends the recording of the Application’s runtime.

These two commands allow the developer to obtain statistics about the time each
customer runs the Application.

Note: Both commands MUST be used together, meaning, that with each time
beginintelEvent is used, there must be endintelEvent command later on.

Return Values:
« UNKNOWN: The Application presented an unknown error.
e NOT AUTHORIZED: The Application is not authorized.

» ID HAS EXPIRED: The Application ID has expired

* NO BEGIN EVENT HAS BEEN CALLED: The “begin event” has not been called
first.

 CONNECTION WITH THE CLIENT AGENT HAS TIMED OUT: The connection
with the Client Agent reached a timeout.

4. End the Connection:

disconnectFromintel()

Command that terminates the connection to Intel’s App store.

Note: This command MUST be executed when the end uses closes the Application.
5. Upgrade:

upgradeFromintel(string I1, string 12, string I3, string 14)

This function calls the upgrade to the next application. The four string parameters
represent the new GUID to call.

Return Values:
« UNKNOWN: The Application presented an unknown error.
e NOT AUTHORIZED: The Application is not authorized.
» ID HAS EXPIRED: The Application ID has expired

 CONNECTION WITH THE CLIENT AGENT HAS TIMED OUT: The connection
with the Client Agent reached a timeout.

