
AppAble Library For Ruby

Reference Guide

Introduction:

The AppAble library allows Ruby developers to make applications on their IDE of choice on
the Windows platform that connect to Intel App store.

Package Contents:

• The Software License Agreement (License.txt)
• The AppAble library files (Library)
• The dependency's libraries (Microsoft.VC90.CRT)
• A Folder containing a Ruby application that access the library (Sample)
• A guide to create the MSI file for submission

Developer requirements:

• The Intel’s App store SDK. It can be obtained here: http://appdeveloper.intel.com/en-
us/

• Microsoft’s runtime libraries (provided with the package).

• Ruby (http://www. rubyonrails.org/)

• A development environment that uses Ruby (recommended, but not obligatory).

http://appdeveloper.intel.com/en-us/
http://appdeveloper.intel.com/en-us/
http://www.python.org/

How to use the SDK:

There are two environments, Debug and Production. The idea is to develop under Debug
and only when everything works, change to Production to build the final application and
submit it to the AppUp store.

To test your Debug application you need to run the “Intel AppUp Software Debugger”, an
application that emulates a communication to the AppUp store. Then run the Debug
application and check if all communication stages work as described on the docs. This
Debugger is run by calling it from the Start Menu and going to the Intel SDK program
folder.

Developing a Simple Console Application:

The example application does the following steps:

• Connects to the Client Agent
• Checks the Authorization status
• Begins an event
• Ends the event
• Disconnects from the Client Agent

First we need to create a simple console application, it can be project in any IDE or simply
write in on any text editor. Netbeans (http://netbeans.org/downloads/index.html) is
recommended for being a free and simple to use IDE.

http://netbeans.org/downloads/index.html

Start by creating a simple ruby project for the application. Use the default settings for
creating the project (you can change the Ruby Platform if there are more than one located
in the computer)

At the end the project tree should look similar to the following

Then we proceed to the main code file, in this case “main.rb” and call the Win32API to be
able to access the dll.

require "Win32API"

Proceed to declare global variables that link to the functions that the library provides

$atdsConnect = Win32API.new('baKno','ConnectToIntelADP',

 ['L', 'L', 'L', 'L', 'P'], 'I')

$atdsStatus = Win32API.new('baKno','GetIntelADPStatus',[], 'I')

$atdsBeginEvent = Win32API.new('baKno','BeginIntelEvent',[], 'I')

$atdsEndEvent = Win32API.new('baKno','EndIntelEvent',[], 'I')

$atdsDisconnect = Win32API.new('baKno','DisconnectFromIntel',[], 'V')

Then we proceed to perform the connection to the Client Agent.

connection = $atdsConnect.call(0x11111111, 0x11111111,
 0x11111111, 0x11111111, "11111111-1111-1111-1111-111111111111")

We need to check whether or not the application is authorized and connected

if connection == 0 then
 puts("Connection successful")
else
 puts(" Error Code: #{connection}")
end

To check the authorization status of the application we use the following command.

status = $atdsStatus.call()

Sometimes is is required to record use time. For that reason, two commands are present
to do the job easily. Remember that “every beginning has an end”, it is recommended to
use these two functions in pair.

status = $atdsBeginEvent.call()
And

$atdsEndEvent.call()

And to disconnect, the following function is executed

$atdsDisconnect.call()

The Intel AppUp SDK also offers an upgrade feature, to get other applications as well, this
is present in our wrapper as well with the following function:

$atdsUpgrade.call(0x22222222, 0x33333333, 0x44444444, 0x55555555)

The full source code of the example is provided within this package.

Deployment of the Application:

Once the code is complete, place the dll file and dependency's libraries on the same folder
where the ruby file is located. Then, start the ATDS in the development environment and
run the application on the IDE or use the following commands when you open the ruby
command prompt:

cd <path to main.rb>

ruby main.rb

Then the Debugger from the SDK must start before the demo is executed.

List of Commands:

1. Connect to the App store:

ConnectToIntel(param1, param2, param3, param4, baKnoGUID)

This command initializes the connection to the App store. Each of the four first
parameters are part of the GUID that the Intel developer program provides to the
developer. The last parameter is the GUID baKno provides for validation.

Note: Because of the current development status of the SDK, The parameter
values must be in hexadecimal of size 8 exactly (i.e.:0x12345678).

So, if the id provided is: 12341234-2345-3456-4567-567890123456

The parameters are: 0x12341234, 0x23453456, 0x45675678 and 0x90123456

Note: For developer purposes, the SDK provides a debugging ID so developers can
test their applications. Each parameter has the value 0x11111111. BaKno has a
debug ID as well. Thus, the command to connect to the developer’s App store is:

ConnectToIntel(0x11111111, 0x11111111, 0x11111111, 0x11111111,
 "11111111-1111-1111-1111-111111111111")

Return values:

• -10: The GUID provided by baKno is invalid.

• -1: The Application presented an Unknown Error.

• 0: The Application started successfully.

• 1: The application could not start.

• 2: The Intel’s Client Agent is not Available.

• 6: The Application is not authorized.

• 7: The Application ID has expired.

• 9: The connection with the Client Agent reached a timeout.

2. Check the Application Status:

GetIntelADPStatus()

Command that checks the current status of the Application

Return Values:

• 5: The Application is authorized

• 6: The Application is unauthorized.

• 7: The Application ID has expired.

• 9: The connection with the Client Agent reached a timeout

3. Save the Application Runtime (Optional)

BeginIntelEvent()

Command that allows the App store client to start recording the Application’s
runtime.

EndIntelEvent()

Command that ends the recording of the Application’s runtime.

These two commands allow the developer to obtain statistics about the time each
customer runs the Application.

Note: Both commands MUST be used together, meaning, that with each time
BeginIntelEvent is used, there must be EndIntelEvent command later on.

Return Values:

• -1: The Application presented an unknown error.

• 0: The command has been executed successfully.

• 6: The Application is not authorized.

• 7: The Application ID has expired

• 8: The “begin event” has not been called.

• 9: The connection with the Client Agent reached a timeout.

4. End the Connection:

DisconnectFromIntel()

Command that terminates the connection to Intel’s App store.

Note: This command MUST be executed when the end uses closes the Application.
If it’s executed earlier, the application may close by itself immediately. This is due
that the App store has a record of the application that is running and terminates
the process automatically.

5. Upgrade

Upgrade(param1, param2, param3, param4)

This function calls the upgrade to the next application. The four string parameters
represent the new GUID to call.

Return values:

• -1: The Application presented an Unknown Error.

• 0: The process started successfully.

• 1: The process could not start.

• 6: The Application is not authorized.

• 7: The Application ID has expired.

