‘}:)
f"a; nn

= A A B~

il W e

AppAble External for LiveCode

Reference Guide

Introduction:

bakKno’s AppAble External allows LiveCode developers to make desktop applications that
connect to Intel's application store using a simple, yet complete set of functions.

Package Contents:

* The Software License Agreement (License.txt)

* The AppAble External files (Externals)

e The dependency's libraries (Microsoft.VC90.CRT)

* Asample LiveCode stack that connects to the store
* Aguide to create the MSlI file for submission

Developer requirements:

e The Intel’s App store SDK. It can be obtained here:
http://appdeveloper.intel.com/en-us/

* Microsoft’s runtime libraries (provided with the package).
e LiveCode 4.x or later running on Windows.
How to use the SDK:

There are two environments, Debug and Production. The idea is to develop under Debug
and only when everything works, change to Production to build the final application and
submit it to the AppUp store.

http://appdeveloper.intel.com/en-us/

To test your Debug application you need to run the “Intel AppUp Software Debugger”, an
application that emulates a communication to the AppUp store. Then run the Debug
application and check if all communication stages work as described on the docs. This
Debugger is run by calling it from the Start Menu and going to the Intel SDK program
folder.

[T] CLR .MET
. Intel &ppUp(TM) Software Debugger 1.0

Add the Extension to LiveCode

At the moment this external only works on Windows. Inside the AppAble package you will
find a directory called "External". Place the contents of that directory inside the Externals
directory at:

My Documents/My LiveCode/Runtime/Windows/x86-32/Externals

After the files are placed correctly, start LiveCode so the External can be loaded
automatically.

Developing a Simple Standalone Application
The example application does the following steps:

* Connects to the Client Agent.

* Checks the Authorization status.

* Begins and Ends a Recording event.

* Upgrades to another application.

* Disconnects from the Client Agent.

* Displays all messages pop-Up windows.

Start by creating a new, empty main-stack and add six push buttons named “Connect”,
“Status”, “Begin Event”, “End Event”, “Upgrade” and “Disconnect”. These buttons will
perform all main functions to interact with the Client Agent.

M Test* = =)

Connect

Status

Begin Event

End Event

Lpgrade

Disconnect

The next step is to add a script to each button, this is done by right-clicking on the button
and select “Edit Script” from the pop-up menu.

Con==-+ "

= Property Inspector

Ll LI

Cut
Copy
Send Message b
u Card & Stack 3
I Disconnect

For the Connect button, add the following script:

on mouseUp
try
answer executelntelApiCommand("Connect",“Ox11111111”, “Ox11111111”, “0x11111111",
“Ox11111111”,“11111111-1111-1111-1111-111111111111")
catch theError
answer "Error" && theError
end try
end mouseUp

The “Connect” parameter of the command command allows the application to connect to
Intel's Client Agent. The next four parameters compose the GUID that Intel provides the
developer to submit the application to the store. The last one is the ID provided by bakno
to validate the external in a production environment.

Note: Check later in this document for more details of this function.

For the Status button, add the following script:

on mouseUp
try
answer executelntelApiCommand("GetStatus")
catch theError
answer "Error" && theError
end try
end mouseUp

This function allows to check the application's current authorization status at any moment
in runtime.

For the Disconnect button, this script disconnects the application from the Client Agent:

on mouseUp
try
answer executelntelApiCommand("Disconnect”)
catch theError
answer "Error" && theError
end try
end mouseUp

Intel allows developer to record the runtime of the application and is done easily, with just
two commands. To begin recording the command is

executelntelApiCommand("BeginEvent")

And to stop the recording
executelntelApiCommand("EndEvent")
Intel also allows developer to upgrade the application to another with just one command,

all that is needed is the GUID of the new application that Intel will provide. The command
to use is the following:

executelntelApiCommand("Upgrade","0x22222222", "0x33333333", "0x44444444", "0x55555555")

To test the application, press on the [EI button on the “Tools” window to debug the

simple application. Press the buttons from top to bottom and check the pop-up
messages. If successful (LiveCode has loaded the external), a “SUCCESS” message should
appear when the Connect button is pressed.

Deployment of the Application

Once the tests are complete, then proceed to deploy the application by going to the
“Standalone Application Settings” that is on the File menu in LiveCode in order to make
sure the External is deployed. The following picture illustrates the recommended setup in
the General tab (the only required).

Standalone Application Settings for DIl Test - General X
: . X & A @ =
1) B & X & -

General Stacks Copy Files Mac 05 5% Windows Uiz Web Bug Reports
Standalone name: | DIl Test (Don'tindude ".exe" or ".app”)
Inclusions

{3 Search for required indusions when saving the standalone application

Advanced Options

(#) Selectindusions for the standalone application

Ask Dialog [] Brushes Script Libraries: [] Database Support:
A R
| Answer Dialo [
. Animation O
Cursaors 0
D Browser P L
[] Print Dizlogs Database w| [SQite
Property Profiles
(#) Remove all profiles on objects
(3 Set all objects to profile:
{3 Indude profiles on objects and the profile library
Maste
Default build folder: C:/Documents and Settings/Owner My Documents /RUNREY E

[Automatically build here

In the picture, the option “Select Inclusions for the standalone applicaction” is selected
and the script libraries, ADTS and ADTS External, are selected.

Go to File->Save as Standalone Application and deploy the Windows test aplication. Move
the folder of dependancy's libraries (Microsoft.VC90.CRT) that is included in the package
to the Externals folder next to the deployed application and all is ready to release.

To test for debugging, the Debugger from the SDK must start before the demo is
executed.

W Intel AppUp(T™M) Soltware Debugger 1.0 3 =100%)

Applcation Service Status Request: SDE Version= 1.00; APl Level=2
Applcation Service Status Response: Compatible

Applcation Authorization Request: SDK Versions= 1,00; ApplicationUUTD
1100000 0-02000=-0000-2000-100010010010100

Authorizing. ..

Applcation Authorization Response: Authorized

Clear I Exk I

List of Commands
1. Connect to the App store:

executelntelApiCommand(“Connect”, string 11, string 12, string I3, string 14, string
baknolD)

This command initializes the connection to the App store. The four “Ix” parameters
are part of the GUID that the Intel developer program provides to the developer.

Note: Because of the current development status of the SDK, The parameter
values of the GUID must be in hexadecimal of size 8 exactly (i.e.:0x12345678).

So, if the id provided by Intel is: 12341234-2345-3456-4567-567890123456

The first four parameters are: 0x12341234, 0x23453456, 0x45675678 and
0x90123456

Note: For debugging purposes, the SDK provides a debug ID so developers can test
their applications. Each parameter has the value 0x11111111. Also, bakno has a
debug GUID to try and demo the application. Thus, the command to connect to the
developer’s App store is:

executelntelApiCommand(“Connect”, “Ox11111111”, “Ox11111111”, “Ox11111111”,
“Ox11111111”, “11111111-1111-1111-1111-111111111111")

Error List:
* Wrong parameters: The parameters provided are invalid
« Invalid DIl GUID: the dll (not the application) GUID is invalid
« All four parameters must be of numeric value: Applies for Intel's GUID.
* baKno.dll: File not Found: The dll file could not be found
* baKno.dll: Invalid File: The dll file is invalid
* NOT INITIALIZED: The application could not start.
* NO CLIENT AVAILABLE: The Intel’s Client Agent is not Available.
e NOT AUTHORIZED: The Application is not authorized.

* ID HAS EXPIRED: The Application ID has expired.

* CONNECTION WITH THE CLIENT AGENT HAS TIMED OUT: The connection
with the Client Agent reached a timeout.

2. Check the Application Status:
executelntelApiCommand("GetStatus")
Command that checks the current status of the Application
Error List:
« NOT AUTHORIZED: The Application is unauthorized.
* ID HAS EXPIRED: The Application ID has expired.

* CONNECTION WITH THE CLIENT AGENT HAS TIMED OUT: The connection
with the Client Agent reached a timeout.

3. Save The Application Runtime (Optional)
executelntelApiCommand("BeginEvent")

Command that allows the App store client to start recording the Application’s
runtime.

executelntelApiCommand("EndEvent")
Command that ends the recording of the Application’s runtime.

These two commands allow the developer to obtain statistics about the time each
customer runs the Application.

Note: Both commands MUST be used together, meaning, that with each time
BeginEvent is used, there must be EndEvent command later on.

Return Values:
« UNKNOWN: The Application presented an unknown error.
e NOT AUTHORIZED: The Application is not authorized.

» ID HAS EXPIRED: The Application ID has expired

* NO BEGIN EVENT HAS BEEN CALLED: The “begin event” has not been called
first.

 CONNECTION WITH THE CLIENT AGENT HAS TIMED OUT: The connection
with the Client Agent reached a timeout.

4. End the Connection:
executelntelApiCommand("Disconnect")
Command that terminates the connection to Intel’s App store.

Note: This command MUST be executed when the end uses closes the Application.

5. Upgrade:
executelntelApiCommand("Upgrade", string I1, string 12, string I3, string 14)

This function calls the upgrade to the next application. The four string parameters
represent the new GUID to call. For debug purposes use 0x22222222, 0x33333333,
0x44444444, and 0x55555555 as parameters

Return Values:

UNKNOWN: The Application presented an unknown error.
e NOT AUTHORIZED: The Application is not authorized.
» ID HAS EXPIRED: The Application ID has expired

* CONNECTION WITH THE CLIENT AGENT HAS TIMED OUT: The connection
with the Client Agent reached a timeout.

